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We present a numerical study of the impact of a two-dimensional plunging wave on 
a rigid vertical wall in the context of potential flow. The plunging wave impinging 
the wall is generated using a mixed-Eulerian-Lagrangian (MEL) boundary-integral 
scheme. The initial stage of the impact is characterized by an oblique impact of 
a liquid wedge on the wall and is solved using a similarity solution. Following 
the initial impact, the MEL simulation is continued to capture the transient impact 
process. The effect of an air cushion trapped between the plunger and the wall is 
considered. In addition to details such as temporal evolutions and surface profiles, 
the main interests are the maximum impact pressure on the wall and its rise time. 
To arrive at appropriate scaling laws for these, simulations are performed and 
correlations are explored for a broad range of local plunging wave kinematic and 
geometric parameters. To assess the present results, direct comparisons are made 
with the experiment of Chan & Melville (1988). Reasonable quantitative agreement 
is obtained and likely sources for discrepancies are identified and discussed. 

1. Introduction 
Large pressures and loads associated with breaking wave impact on sea walls, ships 

and offshore structures are important subjects in ocean engineering. The magnitudes 
of the impact pressure maxima are related to the type of breaking waves, among which 
plunging breakers usually produce the largest impact pressures on the structures. In 
this paper, the impact of a plunging breaker on a rigid vertical wall is considered. 

Both field measurements (Miller, Leverette & O’Sollivan 1974; Blackmore & 
Hewson 1984; Fuhrboter 1986; Whillock 1987) and model experiments (Bagnold 
1939; Hayashi & Hattori 1958; Kirkgoz 1990, 1991; Schmidt, Oumeraci & Partenscky 
1992; Oumeraci, Klamnier & Partenscky 1993; Hattori, Arami & Yui 1994, for impact 
of shallow-water breaking waves; Chan & Melville 1988, Chan 1994, for impact of 
deep-water breaking waves) have shown that the impact pressure history due to a 
plunging breaker striking a vertical wall is of high intensity (10 - 100 kPa) and 
short duration (lo-’ - s). One mechanism responsible for the generation of 
high pressure intensities is attributed to the direct collision of the fluid body in 
the region of the plunger tip and the wall surface (Lundgren 1969; Schmidt et al. 
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1992). In this process, the velocity of the fluid and the effective fluid mass involved 
in the impact directly contribute to the generation of the pressure maxima on the 
wall. Another mechanism is related to the effect of an air cushion trapped between 
the concave boundary of the plunger surface and the wall (Bagnold 1939). As the 
plunger impinges on the wall, the trapped air pocket is compressed, which induces a 
large pressure gradient in the adjacent fluid as well as a high pressure on the wall. 
Researchers (Hayashi & Hattori 1958; Chan & Melville 1988; Hattori et al. 1994) 
found that enclosure of the air pocket during the plunger impact tends to increase the 
impact pressure maxima and reduce the time required for the impact pressure to reach 
a maximum value. Furthermore, they found that, under similar impact conditions, 
an impact with a smaller initial air pocket volume tends to produce larger impact 
pressures. In addition to its effect on the pressure maxima, the trapped air interacts 
with the surrounding fluid in a pulsating motion wherein the fluid energy is alternately 
stored and released. This causes high-frequency oscillations in the impact pressure 
history (Schmidt et al. 1992) which is typically modulated by a damping mechanism 
associated with leakage of the trapped air (Mitsuyasu 1966) and disintegration of the 
air pocket into a mixture of bubbly flow (Cooker & Peregrine 1991). 

These studies also show that the measured magnitude and rise time of the impact 
pressure maxima are marked by large scatter and lack of repeatability even under 
nearly identical experimental conditions. Furthermore, they are highly sensitive to 
local impact conditions, such as the inclination angle and position of the wall relative 
to the approaching breaker (e.g. Whillock 1987; Kirkgoz 1990, 1991; Chan & Melville 
1988). 

Significantly, effective scaling laws for extrapolating from model to prototype 
scales are as yet unavailable (e.g. Fiihrboter 1986), in large part due to the lack 
of understanding of mechanisms associated with the trapped air. Bagnold (1939) 
presented a piston model to approximate the trapped-air impact process as an 
adiabatic compression of a column of fluid mass in an air-filled rigid cylinder. His 
model correlates the impact pressure maxima with the ratio of the length of the column 
of the ‘kinetic mass’ of water to the thickness of the air pocket. Fuhrboter (1986) 
pointed out that different parameters, and hence scaling laws, must be employed in 
different flow regions in the impact process. Stive (1984) indicated that the parameter 
Po/pU2 must be scaled if the deceleration of the water after impact is governed 
by the compression of the enclosed air. Here, PO is the initial air (atmospheric) 
pressure in the air pocket, p the fluid density, and U the (initial) impact velocity of 
breaking waves normal to the wall. A number of other scaling criteria have also been 
proposed in wave-impact and water-entry problems (Whitman & Pancione 1973; see 
also summaries in Hayashi & Hattori 1958; Stive 1984; Blackmore & Hewson 1984). 

Although many experimental studies on breaking wave impact have been per- 
formed, few corresponding analytical and numerical studies are available due to the 
highly nonlinear and transient nature of the problem. The essential physics involved 
in the impact process can be captured in the simplified theoretical framework of 
potential flow. Compressibility of the fluid is ignored in view of the fact that the 
impacting plunging breaker is wedge-like as it strikes the wall and that the impact 
velocity is much less than the speed of sound in the fluid (Korobkin & Pukhnachov 
1988). Furthermore, viscosity and surface tension effects can be neglected since inertia 
forces are dominant during the impact (Cooker & Peregrine 1991). 

In this context, numerical simulations were performed by Vinje & Brevig (1980, 
1981) who employed a mixed-Eulerian-Lagrangian (MEL) boundary-integral method 
to calculate the forces on solid bodies due to plunging breaker impact. Owing to 
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difficulties in evaluating the impact pressures, particularly at the initial stage of the 
impact, the forces were obtained by calculating the time derivative of the pressure 
impulse. Using classical impulse theory (Lamb 1932) and the MEL boundary-integral 
method of Dold & Peregrine (1986), Cooker & Peregrine (1992, 1995) obtained the 
pressure impulse due to a breaking wave striking a vertical wall. In their study, the 
breaking wave approaches the wall in such a way that the waterline quickly moves up 
along the wall, as a result of which no direct collision occurs between the wave front 
and the wall. Their theory was used by Chan (1994) to compare with experiments, 
and it was extended by Topliss (1994) to cases involving wave sloshing in a container, 
and wave impact with entrained air and its effect on a flexible wall. Since these studies 
rely on the impulse theory, they do not provide a complete description of the impact 
process and require ad IIOC parameters to estimate the size of the impact area and 
the duration of the impact. Note that other numerical methods such as the volume 
of fluid method (e.g. Wang & Su 1992) have also been used to study breaking wave 
impact. However, these fixed-domain methods need much more computing effort to 
provide the necessary resolution of the spatial and temporal scales of the trapped air. 

In reviewing the previous studies, it is noted that a number of important questions 
associated with the plunging wave impact problem remain unresolved. For instance : 
(i) How can the initial stage of the plunger impingement on the wall be properly 
characterized and simulated? (ii)  What are the most important scaling parameters 
governing the trapped-air wave impact process? (iii) How do the maximum value and 
duration of the impact pressure scale with these parameters? By performing high- 
resolution simulations of trapped-air plunging wave impact and direct comparison to 
experiments, the aim of this study is to provide some information to help in answering 
these open questions. 

In this study, potential flow theory is used to investigate the impact of a two- 
dimensional plunging breaker on a vertical rigid wall. A computational tank is 
used which consists of a piston wave maker at one end, a rigid vertical wall on the 
other end, and has constant initial water depth. By prescribing the motions of the 
piston wave maker, a (deep-water) plunging wave is created at the opposite wall. 
The simulation is based on the MEL boundary-integral scheme of Vinje & Brevig 
(1981) which has been shown to obtain high-accuracy comparisons to experiments in 
a similar set-up (Dommerniuth ef a1. 1988). 

The initial stage of the impact must be treated with some care. If a small portion 
of the breaker tip is allowed to pass through the wall and is then cut off to produce 
a finite wetted area on the wall, the subsequent simulation results in a non-physically 
high spike in the impact pressure (and in a non-smooth surface profile) which fails to 
converge with finer temporal and spatial discretizations (cf. Tanizawa & Yue 1991, 
1992). To circumvent this difficulty, and to better characterize the initial stage of the 
impact, a (small-time) similarity solution for the general oblique impact of a liquid 
wedge on a wall is obtained. This solution extends the work of Borisova, Koriavov & 
Moiseev (1959) (see also Cumberbatch 1960) who considered the case of symmetric 
normal impact. Such a patching allows a smooth continuation of the MEL simulation 
and a convergent pressure history. Assuming adiabatic conditions, the effect of the 
trapped air is modelled using a polytropic gas law. With appropriate treatment of the 
spray roots (e.g. Zhao & Faltinsen 1993), the MEL simulations can be carried out 
through a number of oscillations of the air pocket (see figures 17 and 18). 

By varying the parameters of the problems such as piston motions and tank length, 
a set of simulations is carried out corresponding to a wide range of local impact 
parameters such as impact velocity and aspect ratio of the initial air pocket (see 
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Appendix B). In each case, the maximum value of the impact pressure on the wall, 
P,, and its rise time, T, (time from the instant of the initial impact to the instant 
when P, is reached) are obtained and correlated with the impact parameters. Based 
on these results, a scaling model, which is a generalization of Bagnold’s piston model, 
is proposed and the empirical parameters of the model are determined. 

Finally, to evaluate the simulation and the scaling model, a direct calculation is 
performed for the conditions of a plunging wave impact on a vertical wall considered 
in the experiment of Chan & Melville (1988). The comparisons show reasonable 
quantitative agreements. Likely causes for some of the discrepancies are also identified 
and discussed. 

In the following, a brief statement of the problem is given in $2. The modelling of 
the initial stage of the impact is presented in 53. The numerical simulation beyond 
the initial impact is given in $4. These results are used to propose scaling laws which 
are discussed in $5. A direct comparison with the experiment of Chan & Melville 
(1988) is provided in $6, and some concluding remarks are made in $7. The derivation 
of the similarity solution for the general oblique impact of a liquid wedge is given 
in Appendix A and details of the plunger wave characteristics used in this study are 
presented in Appendix B. 

2. Statement of the problem 
The simulation of a plunging wave impacting a vertical wall can be divided into 

three stages: (i) the generation of the plunger to the point just before the impact 
(0 d t < t I ) ;  (ii) the initial stage of the impact (from the instant t = tl when the 
plunger tip touches the wall, to the instant t = tl + Atl just after the converging 
plunger jet tip converts into a diverging jet spreading along the wall); and (iii) the 
subsequent evolution ( t  > tl + A t l )  involving a trapped air pocket. In the present 
approach, the direct MEL simulations are carried out for the stages before and after 
the initial impact, and a similarity solution is derived and used for the initial impact 
stage (ii). 

Definition sketches corresponding to stages (i) and (iii) are shown in figures l ( a )  
and l(b) respectively. The fluid flow in a rectangular numerical tank of length Lo 
and initial water depth ho is described by Cartesian coordinates (x,y) and time t .  The 
origin of the coordinate system is located at the intersection between the still water 
level (y = 0) and the y-axis which is directed vertically up. A piston wave maker, 
SL, is located at x = 0 initially, and a rigid wall, SR, is on the right-hand end of 
the tank at x = LO. The bottom of the tank and the free surface are denoted as 
SB and Sf, respectively. Unless otherwise noted, we non-dimensionalize the problem 
hereafter by selecting mass, length and time units such that the fluid density p G 1, 
the gravitational acceleration g = 1, and initial tank depth ho = 1. 

At t = 0, the piston wave maker SL moves abruptly from rest to a constant velocity 
Uo. It travels a distance L1 and then stops. Owing to the phase focusing of the 
different frequency components, a plunging breaker is created towards the far wall. 
To provide an additional adjustment of the characteristics of the resulting breaking 
wave (see Appendix B), a channel of length L, and height h, at the bottom of SR is 
opened at t = 0, maintained up to the instant of impact t l ,  and is closed thereafter. 
For definiteness, we fix L, = Lo/$ and set the horizontal exit velocity in the channel 
to be uniform given by U, = ( 1 0 ~ ~ ) ~ / ’ ,  where yR is the height of the water line on 
SR. The channel height he is left as a parameter of the simulation to be adjusted. 
This is a convenient procedure to create trapped air pockets of different sizes and at 
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FIGURE 1. Definition sketches for a plunging wave impact on a vertical wall in a numerical tank 
for (a)  before impact; and ( b )  after impact. 

different locations on the wall. Different breaking wave profiles and kinematics are 
obtained by numerical testing and adjusting the parameters Lo, L , ,  Uo and h,. For all 
of the cases selected (see Appendix B), a plunging breaker is formed which impacts 
SR in the form of an oblique wedge (see figure 5 ) .  After impact (see figure lb) ,  this 
plunger tip spreads out into a wetted area Sw on the wall, trapping an air pocket 
below between the interior free surface of the breaker, S,, and the wall. 

The mathematical formulation and the MEL numerical scheme used in stages 
(i) and (iii) follow the general approach of Vinje & Brevig (1981). Details of the 
implementation and refinements can be found in Dommermuth et  al. (1988) and 
Tanizawa & Yue (1992). For completeness, a brief summary is given below. 

The two-dimensional potential flow can be described by the complex velocity 
potential 

(2.1) 
where z = x + iy, i = J-1, and 4 and II, are the velocity potential and stream 
function, respectively. Since x is analytical in the fluid domain, Cauchy's integral 

x(z, t )  = 4 k  t )  + iW(", r ) ,  
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theorem applies, from which an integral equation for x is obtained (e.g. Carrier, 
Krook & Pearson 1966): 

aiX(zo, t )  = M d z ,  
z - zo 

where the boundary of the fluid domain is C = SL U SB U SR u Sf for t < tl (figure la), 
and C = SL u SB u SR u S, U Sw u Sf for t > tz (figure lb), and zo E C. In (2.2), the 
Cauchy principal value of the integral is implied, and a is the interior angle at 20. 
Taking real and imaginary parts of (2.2), second-kind Fredholm integral equations 
are obtained respectively for 4 on SL U S, U SR and w on S, u Sf. 

The boundary conditions on C are given from the problem specification. For 
simplicity, only the conditions for t > tl (figure lb) are given here (similar conditions 
apply for t < t r ) .  The normal velocity on the wave maker is specified as 

Uo(y+ 1) for t < ~ / U O  
for t 3 L I / U o  

on SL.  There is no flux through the bottom and the right-hand wall: 

on SB US, 

where c( t )  is a function of time to be determined by solving the boundary-value 
problem. 

On the free surface, the kinematic boundary condition reads 

and the dynamic boundary condition is given by Bernoulli’s equation 

where D/Dt is the material derivative, ( )* denotes complex conjugate, and P is equal 
to the atmospheric pressure Po on Sf, and equals the trapped air pressure P,(t) on S,. 

Assuming an adiabatic process in the air pocket, P, is modelled using a polytropic 
gas law (e.g. Cole 1948): 

where V,(t) is the instantaneous volume (area) of the air pocket, VO its initial value at 
impact, and y ,  the polytropic gas constant. For air, ya=1.4 is used in the simulations, 
except in §6 where y, is adjusted to account for air leakage effects. 

As in typical MEL simulations, the dynamical conditions (2.5) and (2.6) are 
integrated in time for z and 4 on S, u S, starting from initial conditions. A fourth- 
order Runge-Kutta scheme is used for the time integration with dynamic time-step 
sizes based on the surface velocity and spatial discretization (Dommermuth et al. 
1988). A regridding scheme based on smoothing splines (Tanizawa & Yue 1992) is 
employed to remove high-wavenumber instabilities. At each time instant, the complex 
velocity potential x is obtained by solving the boundary integral equation (2.2) and 
the velocity d ~ / d z  is calculated. To calculate the pressure on the wall from Bernoulli’s 
equation, a 4 / d t  must be determined. To avoid finite differencing, a boundary-value 
problem for dx/dt is solved using an equation similar to (2.2) but with x replaced by 
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FIGURE 2. Definition sketch of a liquid wedge obliquely impinging on a rigid wall a t  the instant of 
impact (- ~ . );  shortly after impact (---) (the matched similarity profile); and the profile in 
the absence of the wall (- - - - 1, 

dx/at .  The corresponding boundary conditions for c?$/d t  on Sf u S, and &p/& on 
S, U SR U SB U S, are obtained from the corresponding expressions for q5 and y given 
by (2.6) and (2.3), (2.4) respectively. 

3. Modelling the initial stage of impact 
The initial stage of impact starts as the tip of the plunging breaker touches the 

wall at t = t I .  After this, the generally converging jet tip undergoes a rapid transition 
to a diverging jet or ‘splash’ on the wall (see figure 5 ) .  During this short period, 
tl d t < tr + A t , ,  the effect of the trapped air represented by its volume change 
is negligible, and a local solution can be obtained by modelling the jet tip as a 
liquid wedge moving with uniform constant velocity towards the plane wall. For a 
symmetric normal impact, the problem has been considered by Borisova et al. (1959) 
and Cumberbatch (1960). In the following (also in Appendix A), the method of 
Borisova et al. (1959) is extended to the more general case of non-symmetric oblique 
impact of a liquid wedge. 

3.1. Approach 
Referring to figure 2, a coordinate system ( x , y )  is chosen with a plane rigid wall 
located at y = 0. A liquid wedge, assumed to extend to y -, m moves with a uniform 
velocity ( U ,  - V )  towards the wall. Initially, at t = 0, the tip of the wedge is in contact 
with the wall at (0,O). The geometry of the wedge is defined by its semi-angle f l  and 
its inclination y measured from the y-axis to the bisector of the wedge. 

For t > 0, the wedge spreads out along the wall as shown in figure 2 (solid line). 
The fluid domain D is bounded by the wetted area Sw on the wall, the wedge edges 
SI and S2, and S, at infinity. The velocity potential $(x, y ,  I )  for the flow is governed 
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The free surfaces on the two sides of the wedge Si are defined by x = Si(y,  t ) ,  i = 1,2, 
S1 > S2. On Si, 4 satisfies nonlinear kinematic and dynamic boundary conditions 

V 4 =  Ui- V j  at S,. (3.3) 

84 as, a4asi - _ -  - + -- on x = S i ( y , t ) ,  
ax at ay a y  

(3.4) 

i = 1, 2, and the Bernoulli constant is absorbed into 4 in (3.5). 
The initial-boundary-value problem for the non-symmetric normal ( U  = 0) impact 

problem is solved in terms of a similarity solution (see Appendix A for details). 
The more general oblique impact case represented by (3.3) can be obtained by 
superimposing a uniform horizontal velocity U on the flow. 

3.2. The results of the similarity solution 
As a first check, the case of symmetric normal impact of a wedge is considered. 
Figure 3 shows the present solution for the case p = 22.2" compared to that of 
Cumberbatch (1960). The results for both the surface profiles and pressure distribution 
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on the wall are satisfactory. The difference between the present results and those of 
Cumberbatch ( 1960) stems from the different assumptions on the free-surface profiles 
close to the wall: in the present approach, an exponential function is assumed, while 
in Cumberbatch (1960), a linear function is used. 

The non-symmetric case is new. Figure 4 shows the surface profiles and wall 
pressures for the case of normal impact with [j = 30" and a range of inclination 
angles 7 .  As ;' increases, the thickness of the S1 spray root also increases. For the 
same V ,  it is evident that the fluid area that would pass y = 0 in the absence of the 
wall increases with I?(. In the presence of the wall, one argues physically that more 
of the fluid momentum is displaced by the wall for 7 > 0. This can be seen from 
figure 4(b), where the maximum wall pressure is greater for 7 > 0, accompanied by a 
shift of the location of the maxima to the left as 7 increases. 

Some researchers (Whillock 1987; Kirkgoz 1991) have reported the effect on the 
maximum wall impact pressure due to a change of the inclination angle of the wall 
relative to an approaching breaker. They find that the measured maximum impact 
pressures are greater for certain wall inclination angles than for a vertical wall. It is 
clear that the maximum impact pressure is not only a function of relative position 
between the breaker and the wall at the instant of the impact, but also depends 
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FIGURE 5. Schematic showing matching of profiles of the similarity solution (-) and the 
numerical solution (in the absence of the wall) (- - -) a short time Atr after the impact. 

on the local plunger-wall geometry. More results of the wedge impact problem are 
presented and discussed in $5. 

4. Numerical simulations 
The MEL simulations for the plunging wave impact on a vertical wall are carried 

out starting from rest ( t  = 0) until the time of impact at t = tl. The simulations are 
then continued again with a trapped air pocket from the similarity solution of 53 a 
short time AtI afterwards, i.e. for t > tl + AtI. 

4.1. Matching to the similarity solution 
The oblique impact of the wedge in 33 depends on the parameters (U, -V) ,  p, 
and y. These quantities for a specific plunging wave are obtained from the MEL 
simulation of the problem. The matching procedure is illustrated in figure 5. The 
numerical simulation is allowed to continue a short time longer to t = tl + Atl 
assuming that the wall is absent. This numerical solution at a small horizontal 
distance A x  from the wall is then matched to the similarity solution at t = tl + Atl. 
With the geometric parameters of the wedge in the similarity solution taken from 
the numerical simulation, the matching of the surface profiles is generally quite 
smooth. The numerical and similarity solutions for the velocity potential # in general 
differ by a constant, although the velocity is smooth. The solution is simply to 
integrate the complex velocity aX/dz along the free surface with the values of # and 
y specified at the matching points. This yields a smooth distribution in # and w 
along the matched free surfaces. In practice, with a suitable choice of A x  (given At[), 
the MEL simulation of the matched solution beyond tl + Atl continues smoothly, 
and numerical smoothing of the profile or potential, while available, is generally 
not required. Evidence of numerical convergence of the final solution (say in the 
maximum wall pressure) is presented in the next subsection. 
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FIGURE 6. Free-surface profiles of the spreading jet (a), and wall pressures ( b )  for different panel 
lengths for Case 6 (Appendix B)  with Po/pU2  = 5 at r = t ,  + 0.047. The minimum panel lengths on 
the free surface and on the wall are respectively. 0.01 and 0.0075 (A), 0.02 and 0.015 (0), and 0.04 
and 0.03 ($3). 

4.2. Convergence studies 
To validate the overall simulation scheme, systematic convergence tests are performed 
for varying panel (segment) sizes, integration time steps, and matching parameters 
At, and Ax. Figure 6 shows a representative case (Case 6 in Appendix B) for the free 
surface and wall pressure profiles near the impact zone for decreasing panel sizes. The 
convergence as the panel sizes are reduced is evident. Results for the maximum pres- 
sure on the wall also converge and are stable when the size of the time step is reduced. 

Convergence with respect to the matching parameters is also verified. For example, 
when the simulation corresponding to Case 6 is performed using two different sets 
of (At , ,  A x )  corresponding to (0.013,0.03) and (0.018,0.04), the difference in the 
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maximum impact pressures between the two calculations is found to be about 5%, 
while that in the rise time is about 2%. 

Based on the convergence studies, the parameters for all the simulations in this study 
are chosen as follows. Non-equal panel lengths are used for the exterior free surface, 
S,, with maximum and minimum panel lengths 0.25 and 0.0025, respectively; 100 
panels of equal panel lengths are used for the interior surface S,; and the (constant) 
panel length on the wetted area of the impact zone, S W ,  is 0.0075. As the spray roots 
develop and spread out along the wall, they eventually become extremely thin. To 
permit the simulation to continue, a procedure similar to Zhao & Faltinsen (1993) is 
adopted wherein the tips are truncated and matched to uniform jets. In this case, the 
minimum thickness of the spreading jet is set to be 0.0025. For the Runge-Kutta 
time integration, the dynamic time-step sizes are set to be equal to 0.05Lmin/VmaX, 
where Lmin is the smallest panel length on S,, and V,,, the maximum velocity on S,. 
The matching parameter values are chosen with At! w 0.013 and Ax = 0.03 for the 
twelve cases in Appendix B. Using these simulation parameters, subsequent numerical 
results for the surface profiles and wall pressure (maximum value and rise time) are 
expected to have converged to within 0(5’/0). 

4.3. The results of the numerical simulation 
The main dynamical quantities of interest in this study are the maximum wall pressure 
P, (see definition in 95.1) and the rise time T, for P, to obtain after initial impact. To 
understand the dependence of P, and T, on the kinematic and geometric parameters 
of the problem, a set of twelve different impact configurations is generated and a 
number of simulations for different initial air pocket pressures PO are carried out for 
each of the twelve configurations. The kinematic and geometric particulars of the 
twelve initial impact configurations are given in Appendix B. 

To illustrate the general features of the plunging wave impact, we present in the 
following Case 6 (see Appendix B) with P0/pU2 = 5 as a representative case. Figure 7 
shows the free surface and wall pressure profiles at several time instants beyond the 
initial impact. Following the initial impact, the plunging wave forms a diverging 
jet along the wall trapping an air pocket below. As the surrounding fluid advances 
towards the wall, the air pocket is compressed. At t - tI FZ 0.06, the volume of the 
air pocket V,(t) reaches a minimum value, while the air pocket pressure P,(t) attains 
a maximum according to the polytropic law (2.7). The pressure change inside the air 
pocket directly affects the pressure distribution on the wall as shown in figure 7(b). 
As the air is compressed by the fluid, the pressure gradient in the fluid changes 
rapidly. When P,(t) reaches a maximum, the pressure on the wetted wall adjacent to 
the air pocket also becomes maximum and is generally greater than but close to the 
maximum P, value. Thus both the maximum wall pressure P, and rise time T, are 
directly related to the effect of the trapped air. 

The evolution of the trapped air pocket pressure P,(t) and volume Va(t) relative 
to initial values are plotted in figure 8. As V a ( t )  decreases and then increases, the 
potential energy of the trapped air changes accordingly. Figure 9(a) shows the changes 
in the air potential energy and the fluid potential and kinetic energies during this 
phase. For this case, the maximum potential energy stored in the air pocket can be 
as much as 15% of the total fluid energy at impact. Note that during this relatively 
short phase, the rise of the pocket is primarily due to the vertical pressure gradient 
associated with the hydrodynamic pressure, not the gravity. Thus, the change in the 
potential energy of the fluid is negligible, and the air pocket effectively ‘cushions’ the 
kinematic energy of the impinging fluid. 
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FIGURE 7. Temporal evolution of (a )  surface profile and ( b )  pressure distribution on the wetted wall 
for plunging wave impact Case 6 (Appendix B) with Po/pU2 = 5 ;  at t - t ,  = 0.0125 (-), 0.0406 
(- - - - ), 0.0606 ( ~ . ' ~ ~ ), 0.0762 ( ' ' . ' ), 0.0902 (- ' ). 

The corresponding results for the horizontal momentum of the fluid and the total 
(force) impulse on the wall are given in figure 9(b), which shows the conservation of 
the total momentum. As the air is compressed to a minimum volume, the portion of 
the initial horizontal fluid momentum converted to force impulse on the wall is about 
25%, of which 24% is associated with the force impulse on the wetted impact zone SW.  

Referring back to figure 7(a) ,  it is seen that as Pa increases (above PO), the upper 
limb of the fluid, which has the least inertia, is pushed upwards. In many real cases, 
this part of the fluid may be 'blown off' in the initial compression phase, or after 
a number of rising oscillations (see figures 17, 18, for example), after which the air 
pocket eventually aerates. 
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5. Scaling law 
The generation of a plunging breaker up to the point of impact is generally governed 

by Froude scaling. For the impact process itself, however, a different set of scaling 
laws must be sought due to the different time scales and physical mechanisms such as 
trapped air that are involved. Existing scaling laws for the impact process are generally 
obtained by extrapolating experimental or computational results without considera- 
tion of the many physical parameters involved. As a result, their utility tends to be 
limited (see the summary in Stive 1984; Blackmore & Hewson 1984). In this section, 
the controlling physical parameters and scaling laws for the maximum wall impact 
pressure P, and the rise time of this maximum pressure T, are sought for the present 
case of plunging wave impact on a rigid vertical wall involving a trapped air pocket. 

5.1. Dimensional analysis and flow regimes 

The maximum wall impact pressure (excess over atmospheric value PO) is defined as 
P, = max,,P(y, t )  - Po, y E S, u S R ;  while the pressure rise time is defined to be 
T, = t, - tr ,  where t, is the instant when P, is reached. Our interest here is to relate 
P,,, and T, to the local parameters of the impact problem with the assumption that, 
for similar local conditions, the scaling should be similar regardless of the details of 
the original generation mechanisms. 

In addition to Po, the following local parameters at the instant of impact are 
identified (refer to figure 10a): the (horizontal) velocity of the plunger tip U ;  and the 
lengths h, H and L associated with the plunging wave and air pocket geometry. It is 
convenient to define an equivalent dimension of the air pocket, L = (Hl) ' / ' .  Using this 
definition, the problem relates the dimensionless parameters P , / p  U 2 ,  T, U / L ,  Po/p  U 2 ,  
gL/U2, and Gi, where Gi are dimensionless geometric parameters such as h/L,  H / L  
and t / L .  Noting that the time scale associated with the air pocket oscillation, 
L ( p / p ~ ) l / ~ ,  is generally much smaller than that associated with gravity, (L/g)'/ ' ,  (for 
L < O( 10) m, say), the effect of gravity can generally be neglected during the impact 
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FIGURE 9. Temporal evolution of (a) energy and ( b )  momentum after impact for Case 6 (Appendix B) 
with Po/pU2  = 5. For (a): fluid kinetic energy (- - - - ); fluid potential energy ( . . . . ); trapped 
air potential energy (- ~ -); and total mechanical energy (--). For ( b ) :  horizontal fluid 
momentum (- - - - ); wall force impulse (- - --); and the sum of the two (-1. 

phase. Thus, P m / p U 2  and T,.U/L can be represented in the following functional forms 

T,- U = f r  (5 Gi) 
L pu2' 

Ignoring the geometric variations G, for the time being, three parameter regimes can 
be identified depending on the dynamical parameter Po/pU2.  

Regime I is characterized by Po/pU241,  wherein the inertia of the fluid dominates 
that of the air, and the dynamics of the latter can be ignored despite substantial 
compression of the air pocket. In this regime, P,,,/pU2 is primarily a function of the 



236 S. Zhang, D. K .  P. Yue and K .  Tanizawa 

(Fluid mass 2) 
M2 = C2phf 

/ 
M ,  = C2pH2 / 
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FIGURE 10. (a) Schematic of the plunger tip at the instant of impact showing: h, the depth of 
the plunger tip; H ,  the height of the air pocket; Hb, the height of the plunger measured from 
the plunger crest to the still-water level; t', the width of the air pocket; U ,  the horizontal impact 
velocity; and Po, the (initial) trapped air pressure. (b)  The corresponding two-mass piston model 
with the effective fluid masses Mr and M2. 

plunging jet geometry alone, i.e. 

(5.3) 

Regime XI covers the moderate range of Po/pU2 wherein both the effects of the fluid 
and the trapped air are important and (5.1) and (5.2) apply. Regime 111 corresponds 
to P0/pU2+l ,  for which the excess pressure due to impact is small relative to PO. In 
what follows, only regimes I and I1 are further considered. 

5.2. Regime I :  wedge impact approximation 
For Po/pU2<.1, the maximum wall pressure may be approximated by that due to the 
wedge impact of $3, and Gi are simply the wedge angles p and y :  

This relationship is illustrated in figure ll(a), in which P m / p U 2  is plotted as a function 
of wedge semi-angle p for a range of inclination angle y .  The figure highlights the 
strong dependence of Pm/pU2 on y ,  especially for moderate to large p. As discussed 
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FIGURE 11. Maximum impact pressures (a), and total impact forces (b)  as a function of semi-wedge 
angle f l  and inclination angle 7 = 0" (-); 5" (- - - - );  10" (- . - ); 15" ( . . . ); and 
20" (- -- --). 

in 93.2, for a given U ,  the rate of fluid momentum transfer to the wall increases with 
y, resulting in a larger impact pressure. As f i  + 0, P,,, converges to the stagnation 
pressure pU2/2 .  Similar trends are seen in the impact force F on the wall as shown 
in figure 1 l(b),  except now F --+ 0 as f l  + 0. 

5.3. Regime II: modified Bagnold model 
In this regime of moderate Po/pU2 = 0(1), f P  and f r  depend on more than one 
parameter and one would in principle need to examine the combined parameter space 
( P o / p U 2 ,  Gi)  systematically to determine (5.1) and (5.2). An attractive alternative 
is to obtain a simple physical model to represent the dependencies. Following 
Bagnold (1939) and extending it to include more geometric information, a simple 
dynamical system, illustrated in figure 10(b) is constructed . The dynamical system 
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consists of two fluid masses: MI = ClpH2 and M2 = Czphe, corresponding to the 
fluid volume behind and above the air pocket respectively. Here, C1 and C2 are 
empirical constants yet to be determined. These two masses act on an air piston 
which serves as a spring (see figure lob). The initial velocities of M1 and M2 are 
specified as Ul(0)  = C3U and U2(0) = 0, respectively, where C3 is another constant. 
The equations of motion for the two masses are 

MIXI = (P,  - Po)H, (5.5) 

M2X2 = (Pa - Po)[. (5.6) 
For Pa = Po(Vo/Va)Ya and relative displacement X = ( x , / /  + x 2 / H )  < 1, (5 .5)  and 
(5.6) reduce to a single equation for X :  

( e2;;yzM2) x + y,PoX = 0 ( X 2 ) .  (5.7) 

To the leading-order approximation in X ,  the frequency of the (linear) system above 
is 

0* = yaPo ( __ eEl  + &) 
Substituting in the expressions for M I  and M2 yields 

+ -, 
4T;~aPo C I  hC2 
n2pHe - 1 G _ -  (5.9) 

where T, = 71/20. The maximum pressure Pm corresponding to the linear system is 

From (5.9) and (5.10), we finally obtain 

(5.10) 

(5.1 1)  

(5.12) 

where Cp and CT are now the undetermined empirical coefficients and are related to 
the geometric parameters (and C1, C2, C,) by 

(5.13) 

(5.14) 

5.4. Estimation of C p  and CT 
Equation (5.14) shows that C p  is a function of e / H  and t / h .  Of the two, t / h  is more 
important than G/H since in the two-mass piston model (5.7), the frequency of the 
system is controlled by the body with the smaller mass. 
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FIGURE 12. Normalized maximum pressure P,,,/Po (0). and pressure rise time T,U/L (b ) ,  as a 
function of (PO/pU' ) - ' i2 .  from numerical simulations, for / / h  = 1.3 (- . . - ); 1.9 (-- - --); 
2.1 (- . ~ . ); 2.4 ( . . ); 3.3 (- - - - ); and 4.9 (- - -). 

To explore the dependence of C p  and CT on / / h  and d / H ,  numerical simulations 
are performed for the twelve (initial) plunger geometries in Appendix B, and in each 
case, for a range of Po/pU2  = 2, 5, 10, 20 and 50 - a total of sixty simulations. 

Representative results from these simulations are plotted in figure 12 for P,/Po and 
T,U/L versus ( P U ~ / P ~ ) ' / ~  for the range of / / h  represented in Appendix B. The values 
of C p  in (5.12) calculated from all (sixty) simulation cases are plotted in figure 13 as a 
function of / / h .  It is apparent that Cp is roughly inversely proportional to t / h  for a 
given Po/pU2 .  Physically, as h increases, the effective fluid mass above the air pocket 
increases, resulting in a greater P, as well as the duration of the compression T,. 
Alternatively, for a given compression of the air pocket in the horizontal direction, 
a smaller k corresponds to a larger volume change of the pocket, so a larger P??, is 
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FIGURE 13. Distributions of C p  as the function of / / h ,  from numerical simulations, 

for Po/pU2 = 2 (O), 5(A), lO(V), 20(0)  and 50(0 ) .  
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FIGURE 14. Distributions of CT as function of l / h ,  from numerical simulations, 

for Po/pU2  = 2 (a), 5(A), lO(V), 20(0) and 50(0) .  

produced. This finding is consistent with the experimental observations of Hattori et 
al. (1994). As was suggested earlier, no strong dependence of Cp on d / H  is found 
for the same cases computed. Evidently, since the fluid strikes the air pocket almost 
horizontally, the change in the air pocket dimension occurs mainly in its width d ,  so 
that a different pocket depth H does not strongly affect the ratio of the initial volume 
to the instantaneous volume of the trapped air. 

Assuming that Cp depends on one geometric parameter d / h ,  a x2 fitting (e.g. Press 
et al. 1989) is applied to the data in figure 13 to obtain that Cp 5.9(1/!1)-',~, or 
when C p  is treated as a constant, a value of Cp N 2.6. In a similar fashion, the CT 
values from the simulations are plotted against d / h  in figure 14. The dependence on 



Plunging LtLii'e impact on a vertical wall 24 1 

0 0.01 0.02 0.03 0.04 0.05 
i",.gl U 

FIGURE 15. Correlation between P,,,/pU' and T,.g/U,  from numerical simulations, for Po/pU2 = 2 
(0); 5 (A); 10 (0): 20 (0); and 50 ('33). A x2 fit corresponding to P,,,/pU' = 0.2(T,g/U)-095 
(- - - - ). 

P/h is weak over the range of / / h  between 1.3 and 5 represented by the data, and a 
constant value fit of the data yields C T  = 0.73. In summary, the scaling laws based 
on the cases examined above can be expressed as 

(5.16) 

The correlation between P,, and T, can also be obtained from the simulation data 
and is presented in figure 15. A simplified relation without involving Po/pU' and 
h / t  IS obtained with x2 fit which gives P,,,/pU' zr 0.2(Trg/U)-'. This relationship, 
P,, x Tr-', is in agreement with the measurements of Blackmore & Hewson (1984), 
Kirkgoz (1990), and Hattori et a/ .  (1994). We mention, finally, that the present 
simulation datasets have also been examined for possible correlation between the 
maximum impact force and its rise time. The results, however, show appreciable 
scatter and no systematic dependence is identified. 

6. Direct comparison with experiment 
6. I .  Procedures 

To assess the validity and usefulness of the present simulations and scaling laws, a 
direct simulation of the experiment of Chan & Melville (1988, hereafter referred to 
as CM) is performed for the impact of a deep-water breaking wave against a vertical 
wall. The specific case considered corresponds to case '(b)' of CM (see figure 16). 
The numerical simulation duplicates exactly the experimental conditions in terms of 
the vertical wall location, Lo = 11.75, and the paddle motion of the wave maker 
(cf. Dommermuth et al. 1988). In the experiments, the physical still water depth 
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FIGURE 16. Surface profiles of the experiments of CM obtained from high-speed films at ca. 1100 
frames per second. The time from the start of the wave maker in seconds for each profile is: 
(i) 17.014; (ii) 17.004; (iii) 16.984; (iv) 16.979; (v) 16.968; (vi) 16.964; (vii) 16.944; and (viii) 
16.924. Elevations relative to still water level (SWL) are also indicated. The parameters of the 
experiment are: ho = 0.6 m, Lo/ho = 11.755, and characteristic incident wave period T, = 1.136 s 
and wavelength L,, = 1.936 m. (Reproduced, with permission, from CM figure 6b.) 

is ho = 0.6 m, and for comparison to the measurements, the density of water p, 
gravity g and atmospheric pressure Po are chosen simply as lo3 kg/m-3, 10 m/s-* 
and lo2 kN/m-2, respectively. The numerical procedure used to generate the deep- 
water breaking wave up to the point of impact at the wall follows closely that of 
Dommermuth et al. (1988) with minor refinements on the regridding and smoothing 
procedures introduced by Taylor (1990). 

6.2. Free-surface projiles and velocities 
Figure 17 shows the computed free-surface profiles before and after impact at different 
time instants. These can be compared with the profiles obtained from experiments of 
CM in figure 16 (reproduced from CM figure 6b). Before impact, at t - tz NN -0.053, 
as the contact point on the wall ascends to about y = 0.08, the computed height of 
the plunger tip is 0.14. The corresponding value from the experiment (cf. profile (vii) 
in figure 16) is about 0.15 (the conversion factor from the experiment is L,/ho N 3.23). 
At the instant of impact, the height of the computed impact point is approximately 
0.16, while from figure 16, this value is between 0.17 and 0.20. The time of impact is 
tl 2: 51.18 from the calculation, while the estimated value from CM is between 51.15 
and 51.19 (these are converted from figure 16 after subtracting 4.44 s to account for 
a time delay of the wave maker in the calculation). As for the size of the air pocket 
at impact, an accurate reading from the experiment is difficult, although a qualitative 
estimate is still possible. From figure 16, if one measures the vertical distance between 
z / L  = 0.051 and 0.064 and estimates the actual pocket dimension at the instant of 
impact to be approximately half that distance, one obtains a value of H w / w 0.021. 
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FIGURE 17. Free-surface profiles before impact (a )  at t -  tr = -0.134 (- . . - ); -0.072 (- . ~- . ); 
-0.053 (-- - -); -0.017 (- - - - ); -0.001 (--); and during impact ( b )  at t - tr = 0 (--); 
0.017 (- - - - ): 0.026 (- ' -~ ' ); 0.039 (- .- -); 0.054 (- ~ ' ' - ). 

This is to be compared with calculated values of H = 0.016 and e = 0.013. The 
qualitative agreement is still reasonable. 

In CM, the maximum horizontal crest speed of the breaking wave is measured in 
the absence of the vertical wall to be about 2 m s - ~  (U  2 0.82), but no impact velocity 
at the instant of the impact is given. The numerical simulation shows a horizontal 
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velocity of the plunger tip, U ,  increasing from - 1.0 at an instant t - tl N -0.07 
before impact to - 1.37 at the instant of impact. The upward vertical tip velocity 
of the spreading jet on the wall just after impact at y = 0.17 and t - tf N 0.0012 is 
about 5.4. From figure lO(j) of CM, the vertical velocity of the jet tip at a similar 
stage is estimated to be about 4.9. Overall, the simulation of the impact wave profile 
and velocities agree with the experimental values to within about 10%. 

6.3. Wall pressure 
6.3.1. Pressure oscillations 

CM observed that the oscillations in the measured wall impact pressures are as- 
sociated with the trapped air. The measured frequency of the oscillations, which 
is inversely proportional to the volume of the trapped air pocket, ranges from 
2 - 5 kHz for high-frequency oscillations to 300 - 800 Hz for low-frequency oscil- 
lations. Figure 18(a) plots the computed time history of the impact pressure (with 
yu = 1.4) at the location of the initial impact point of the plunger tip ( y  = 0.16). 
Also plotted is the relative volume change of the trapped air. The oscillation 
frequency here is about 500 Hz which is within the medium frequency range in- 
dicated by CM. Figure 18(a) also shows decay of the pressure oscillations with 
time. Figure 18(b) shows the time history of the impact force on the wall within 
the impact zone Sw. The impact force also exhibits the oscillating behaviour of 
the impact pressure. By examining the distribution of energy among the different 
components, it is found that the main energy exchange during the impact takes 
place between the fluid kinetic energy Ek and fluid potential energy E,. As the wave 
moves up along the wall, E, increases and Ek decreases, which leads to a reduc- 
tion of the air pocket oscillation amplitudes. The duration over which the pressure 
oscillation decays to an insignificant level is close to 0.8, the value measured by 
Chan (1986). 

6.4. Maximum impact pressure on the wall 
The computed and measured maximum impact pressures on the wall are plotted in 
figure 19. The simulation results, figure 19(a), give the wall pressure distribution at  the 
instant, T,., when P, is reached. Our simulations show that the maximum pressures in 
the vicinity of P, (close to the air pocket) are also reached at approximately the same 
time instant. Thus the pressure profile(s) in figure 19(a) near P, can be considered to 
be also the maximum wall pressures at these locations. Far from P,, this is no longer 
true, and the value there should not be considered to be the maxima reached. Our 
main interest, of course, is in P, and values in its vicinity. 

For comparison, the measured peak pressures at seven locations from repeated 
runs of CM (see also Chan 1986) are plotted on the same scale in figure 19(b). 
Comparing the two, we note that the computed P, (using ya  = 1.4) is 2 20.2 which 
is reached at t - tf _N 0.003 at a location of y F 0.16. This maximum pressure 
is about three times (- 4.5 standard deviations) higher than the mean measured 
value of the maximum wall pressure (P ,  2: 6) which is obtained at approximately 
the same location. Away from Pm, the measured maximum values decrease rapidly 
with depth and are lower than those from the computed profile. Indeed, the overall 
qualitative comparison would be better if the computed profile(s) could be reduced 
(shifted) by a constant value. Returning to the quantitative comparison of P,, 
it is important to take into account some of the physical factors present in the 
measurements. 
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FIGURE 18. (a) Temporal evolution of the wall impact pressure at  y / h o  = 0.16 (-); the air 
pocket pressure variation P,/Po - 1 (-- - --); and the trapped air volume change V',(t)/Vh(0) - 1 
(- . -- . ). (b)  Temporal evolution of the wall impact force within the impact zone (on S W ) .  

Eflect of spray and air leakage 
In the simulations, the trapped air pocket is modelled as a two-dimensional area 
within a (simple) closed contour. In reality, the pocket is a region of water spray 
resulting from instability of the breaking wave and air entrainment. According to 
Schmidt et al. (1992), the air entrainment in a plunging breaker impact on a vertical 
wall can reduce the sound speed in the impact region to a mean value of - 210 m s-', 
which is about an 80% reduction of the sound speed in water. In addition to the 
spray effect, some of the trapped air escapes vertically along the wall during the 
impact. This reduces the 'stiffness' of the air pocket and consequently the maximum 
air pressure in the pocket and P, as well. 
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Such two-phase flow phenomena cannot be rigorously described in the present 
simulation because of lack of information of the equation of state in the trapped-air 
region. However, the trapped-air effect on P, and T, can be approximately modelled 
within the present framework by adjusting the global behaviour of the trapped-air 
pocket, in this case, the 'effective stiffness' of the air pocket. As shown in (5.8), ya 
can be treated as a spring constant in the mass-spring system. Thus, an approximate 
way to account for the net effects of spray and air leakage is to consider a value of 
ya that is smaller than 1.4 (Koehler & Kettleborough 1977). We remark that while 
modifying the value of ya in a polytropic law is strictly non-physical, it provides a 
useful mechanical interpretation (e.g. Prosperetti 1977, 1982) in the present context. 
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To obtain a suitable value of y o  for comparison to experiment, two estimations 
are made. One is based on the relation between yo  and the natural frequency of a 
spherical bubble in an unbounded fluid oscillating with respect to its initial radius & 
and initial gas pressure PO (Lighthill 1978; Prosperetti 1982), COO = (3y,P0/p)'/~/&. 
From Chan (1986, p. 200), the measured frequency of the pressure oscillation due 
to the air pocket pulsation is about 400 Hz and the width of the (two-dimensional) 
pocket is 1 cm. Approximating & to be 0.5 cm, a value of ya z 0.53 is obtained. 
Another estimation is obtained from the measured sound speed in the plunging wave 
impact regions by Schmidt et al. (1992). Assuming that the mean measured value of 
the sound speed of C x 210 m s-' is valid inside the air pocket (Landau & Lifshit 
1979, p. 248), can be deduced from C = ( r , P ~ / p ~ , ) ' / ~  where pa is the density of the 
air ( p J p  x 0.0013). This gives y u  2 0.57. 

Based on the above argument, a new simulation is performed using a value of 
y o  = 0.5 for the trapped air. The resulting wall pressure profile for P, is also plotted 
in figure 19(n). In this case, the maximum impact pressure is P,, = 14.52 at y N 0.16 
and is reached at t - tl 2: 0.004. This represents approximately a 28% reduction in 
P, compared to the case of yo = 1.4. 

Effect of' hydroelasticity 
In the simulations, the vertical wall is considered to be rigid, which tends to overesti- 
mate the resulting maximum pressure compared to the more realistic case of a (stiff) 
elastic wall (e.g. Kirkgoz 1990; Kvilsvold & Faltinsen 1995). In the experiments, 
Chan (1986, p. 209) indicates that the impact causes a certain degree of vibration of 
the vertical wall. At two locations on the wall, y = 0.144 and 0.1, the acceleration of 
the wall and the maximum perturbation pressures due to wall vibration are measured 
to be - 3g and - 1.2 kPa, respectively. This corresponds to a 3% - 6% reduction of 
the impact pressure compared to a rigid wall. 

To investigate the hydroelastic effect, the simulation is repeated with the rigid wall 
replaced by a cantilever elastic elementary beam. From the experiment, the material 
properties are estimated to be mass per unit area x 0.175 and flexural rigidity NN 0.01. 
Again a value of yn = 0.5 is used. In the hydroelastic simulation, the fluid motion 
during impact is coupled with the response of the beam (cf. Zhang, Storhaug & 
Yue 1995). The resulting profile of the maximum wall pressure is also plotted in 
figure 19(a). The maximum pressure P,fl is now reduced by - 6% to a value of 13.63. 
The maximum impact force on the wetted area Sw is reduced by - 8% from 0.206 
for the rigid wall to 0.189 for the elastic wall. 

Effect of size and spacing of the pressure transducers 
The spacing and sensing size of the pressure transducers in the experiment directly 
affect the peak pressure measurement (Takemoto 1984; Fuhrboter 1986). The distance 
between two adjacent pressure transducers in CM is = 0.02, while the transducer 
diameter itself is NN 0.01. Using the wall pressure profiles in figure 19, we estimate 
reductions in the measured value of P, in the range of 1-3 depending on the location 
of P,, relative to the probes. 

Taking all of the above effects into account, the best numerical estimation of 
the value of P,JpU' to be compared with the measurements of CM is between 
10.63 and 12.63 with a mean value of 11.63. This is shown in figure 19 com- 
pared to measured maximum impact pressures at seven locations along the wall 
in repeated experiments by Chan (1986) (cf. CM figures 16 and 17). The mean 
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value of P, registered by the transducer located at y = 0.184 from 21 measure- 
ments is 6.18 with a standard deviation of 3.11. The difference between the 
mean value of the calculated maximum pressure (using y a  = 0.5 and accounting 
for hydroelasticity and reductions due to discrete transducer measurements) and 
the mean experimental value is thus approximately 1.75 standard deviations of the 
experiments. 

The maximum pressure rise time T, from the calculation for yn  = 0.5 is 0.0039, while 
the mean value of T, from the experiments is 0.0047 with a standard deviation of 
0.0022. The difference in T, between the calculation and the experiment is therefore 
less than 0.4 measurement standard deviations. Given the large sensitivity and 
variability in the experiment, such comparisons for P, and T, are quite remarkable. 

It is remarked finally that if the experimental parameters of CM are used directly 
in the scaling law in $5 (with C p  = 2.6 and CT = 0.73, respectively), the predicted P, 
is 14.6 (before adjusting for wall elasticity and transducer reductions) as compared to 
the corresponding value of 14.5 for ya = 0.5 and 20.2 for ya = 1.4 given above. The 
corresponding scaling law prediction for T, is 0.0021. 

7. Conclusion 
The impact of a two-dimensional plunging breaking wave trapping an air pocket 

against a vertical wall is studied numerically. The plunging wave generated by a 
piston wavemaker is simulated using a mixed-Eulerian-Lagrangian (MEL) boundary- 
integral scheme. The initial stage of the impact is characterized by an oblique impact 
of a liquid wedge on the wall and described by a similarity solution. Following the 
initial impact, the simulation with a trapped air pocket is continued using MEL with 
the trapped air described by a polytropic gas law. The focus of the study is on the 
maximum impact pressure on the wall and the scaling law valid for the present case 
of impact involving trapped air. 

The major results of this study are as follows. The maximum wall impact pressure 
can be well scaled by the local parameters of the breaker at the instant of impact: U ,  
the horizontal impact velocity; h, the depth of the plunger tip; L and H ,  the width 
and height of the air cushion; and Po the initial air pocket pressure (atmospheric 
pressure). Among these, the dimensionless parameters P0/pU2 and L/h  are found to 
be most important, and provide the scaling laws for the maximum impact pressure, 
P,/pU2, and the rise time of this pressure, T,.U/(HL)'/2, based on a simplified spring- 
mass model of the impact process. Systematic MEL simulations (sixty in all) varying 
these parameters support this model and provide best-fit estimates of the model 
coefficients. 

As a practical illustration, simulations are performed and direct quantitative com- 
parisons are made to the tank experiment of Chan & Melville (1988). The present 
numerical simulations compare quantitatively with the experimental measurements of 
CM, especially when experimental/physical factors not present in the computational 
model are accounted for. The predictions for this case based on the simple scaling 
laws we derived are also reasonably good. These provide support for the validity and 
usefulness of MEL simulations for practical predictions and for the reliability of the 
scaling laws we obtained. 

This work was supported financially by grants from the Office of Naval Research. 
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FIGURE 20. Definition sketch in the similarity-variable plane (<, q )  for the non-symmetric normal 
impact of a liquid wedge on a rigid wall at the instant of impact (- . - . ); shortly after impact 
(-) (the matched similarity profile); and the profile in the absence of the wall (- - - - ). 

Appendix A. Similarity solution for the non-symmetric normal impact of a 
liquid wedge on a wall 

Introducing similarity variables 5 = x / V t ,  q = y / V t ,  @ = 4 / V 2 t  and ii = Si /Vt ,  
i=1,2, into (3.1) to (3.5) (with U = 0), the following equations in the similarity plane 
( t , q )  (see figure 20) are obtained: 

V”(5,Y) = 0 in “ , r ) ,  (A 1) 

?@ 
- = 0  on v = O ,  
? Y  

Letting i3@/d[ 
respect to q ,  the boundary conditions (A4) and (A 5 )  can be expressed as 

ul(q)  and i3@/dq v L ( q ) ,  and differentiating (A 5 )  with 

(A 6) 

(A 7) 

(v, - q)v; + (u, - i l>u:  = 0, 

u, = i, - rill’ + vli; ,  
where ’ represents the derivative with respect to y. Eliminating 21, from (A 6) yields 

It is noted that (A8) is a first-order ordinary equation for v i (q )  provided that the 
free-surface profiles (, are known. Now assuming [, are linear functions of q away 
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from the wall and exponential functions of y near the wall (Borisova et al. 1959), (, 
can be written as 

where a,, b,, c, and d, are constants to be determined. As q -+ co, [, + (y + 1) tan a, 
with al = y + p and a2 = y - p .  This produces a, = b, = tan a,. To find the remaining 
four unknowns c, and d,, (A9) is substituted into (A8)  and upon solving (A8) the 
expressions for uI are obtained: 

C, = a,q + b, + dle-civ, (A 9) 

1 a.e. A. 
ci CiPi CiPi 

0. - - + 1 - - q + - - 2 In 2cidiei (pi - (iei)  - 2 In 2(Aipi +ai(: + l),  (A 10) I - co ( ;,) 
Pi 

where Li = (1 + at)'/2, pi = (1 + [ i2 )1 /2 ,  ei =sign(&) and Co is a constant. Using 
boundary conditions viJv=0 = 0 and vi\,7+m = -1 to eliminate Co in (A 10) yields 

Ci (' - 1) - + cihi In [ 4A3hi - aiei + cidiei) 1 /zi aiei /zi - aiei 

In 2[Aihi + ai(ai - cidi) + 11 = 0, (A 11) 
Ai 

cjhi 
-_ 

where h? = 1 + (ai  - cid;)2. 
With i = 1, 2, (A 11) gives two independent relations. To solve for ci and di ,  two 

more equations are needed. Considering the conservation of mass (see figure 20), the 
fluid volume displaced by the wall should equal that passing the wall position if the 
wall were absent. Thus, the area of the triangle enclosed by the wedge and the wall 
should be identical to the areas enclosed by the free surfaces Ci, and the wall and the 
edges of the wedge at t = 0 given by li = aiy + bi. The expression for the conservation 
of mass has the form 

which yields the third relation 

Now considering the conservation of momentum in the direction parallel to the wall, 
the fluid momentum in the <-direction should be a constant since an impact in the 
q-direction does not change the momentum in the <-direction. This implies that the 
<-momentum of the fluid after the fluid is displaced by the wall is equal to that of 
the fluid if the wall were absent. This relation can be written as 

This produces the fourth relation for ci and di ,  

Equations (A 1 l), (A 13) and (A 15) form a system of nonlinear algebraic equations 
for ci and di which can be formally represented as P ( X )  = 0 with X = (cl,c2,dl,d2). 
The solution can be obtained by Newton iteration: AX,  = -VF-'(Xk)F(Xk) and 
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FIGURE 21. Free-surface profiles at the time of impact for the twelve cases in Appendix B. ( a )  Cases 
1 (- -), 2 (- - - - ), 3 (-- . ' ), 5 (- - -), 6 ( - - .  1 - ); and ( b )  cases 7 (-), 
8 ( -  - - - ), 9 ( -  ~~ , 

), 4 ( . . 
~ . ), 10 ( . . . . ), 1 1 (-- - -) and 12 (- . , ~ ). 

Xk+,  = Xk + AXk, where k is the iteration index and V is the gradient operator with 
respect to X .  The initial guess for X is chosen as (2,2,1, -1). The increment AX is 
obtained iteratively until the solution converges to llAX1l,x < lo-*. 

Substituting the values of uI ,  bi, cir and di into (A9)  gives the free-surface profiles 
C l .  The velocity of the free surfaces is given by (A7) and (A 10). The pressure on the 
wetted area, Sw , can be calculated numerically by solving a boundary-value problem 
for 4 on Sw with Dirichlet boundary conditions on S j  and S, given by the similarity 
solution. 
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Case Lo Uo h, L1 C f / H  C/h / / H h  U 
1 5.6 0.7 0.5 3.0 0.301 0.628 3.308 0.287 1.895 
2 5.7 0.7 0.5 3.0 0.328 0.659 3.814 0.314 1.898 
3 5.8 0.7 0.5 3.0 0.355 0.689 4.128 0.339 1.912 
4 5.6 0.8 0.5 3.2 0.250 0.498 1.923 0.212 2.016 
5 5.7 0.8 0.5 3.2 0.276 0.520 2.140 0.233 2.034 
6 5.8 0.8 0.5 3.3 0.306 0.543 2.488 0.258 2.066 
7 5.7 0.7 0.4 3.0 0.294 0.797 3.231 0.281 1.909 
8 5.7 0.8 0.4 3.2 0.238 0.617 1.935 0.201 2.052 
9 5.7 0.8 0.3 3.2 0.206 0.720 1.776 0.174 2.066 
10 5.4 0.8 0.4 3.1 0.155 0.601 1.314 0.133 1.987 
11 5.6 0.7 0.5 2.5 0.378 0.651 4.909 0.368 1.859 
12 5.6 0.8 0.5 2.5 0.298 0.587 2.423 0.294 1.741 
* 11.75 f ( t )  0.0 0.0 0.013 1.182 1.625 0.077 1.369 

TABLE 1. Lo, initial tank length at t = 0; Uo, horizontal velocity of the wave maker; he, depth of 
the exit channel under the vertical wall; L1, distance at which the wave maker stops moving; C, 
thickness of the air pocket (see figure 10); H ,  depth of the air pocket (see figure 10); h, depth of the 
plunger (see figure 10); Hh, height of the plunger measured from the plunger crest to the still-water 
level; U ,  horizontal impact velocity of the plunger tip at the instant of impact. 

Appendix B. Characteristics of the numerically generated plunging breakers 
Table 1 summarizes the characteristics of the plunging breakers used in the numer- 

ical simulations in $4, $5 and $6. The free-surface profiles at the instant of impact 
corresponding to cases 1-12 are presented in figure 21. Case * corresponds to the 
experiment of CM with measured wave maker velocity history f( t )  (cf. Dommermuth 
et al. 1988). 
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